User-Authentication in NodelS

Agenda

e User Model

e Passportl)S

e Signing Up

e Encrypting passwords

e |ogging In

© New York Code + Design Academy 2016

Setup

e Google and download "Postman". This is an application that
allows you to quickly make http requests.

o We'll be using this to test our functionality as we build it.

© New York Code + Design Academy 2016

https://www.getpostman.com/

Setup - Model

 We need to first create user model that has the fields to store the email and password for each user

//models/user.js

module.exports = function(sequelize, DataTypes) {
var User = sequelize.define('users’', {
email: DataTypes.STRING,
password: DataTypes.STRING,
firstName: DataTypes.STRING,
LastName: DataTypes.STRING
3 {
classMethods: {
associate: function(models) {

}
1)

return User;

¥

© New York Code + Design Academy 2016

Approach

e We're going to be building this out in pieces and connecting all
the dots at the end.

e On one side, we're going to build the routes that will accept
requests to 'Sign Up' and 'Log In'.

e On the other side, we're going to building the model and logic
that fulfills these requests.

e The last step is to test that everything is working end-to-end.

© New York Code + Design Academy 2016

Authentication Using PassportJS

e Passport)S is a node module whose sole purpose is to
authenticate users and authorize requests, which it does through
an extensible set of plugins known as strategies.

 You can use Passport to allow users to use their Facebook,
GMalil, Linkedln and other accounts as authentication into your
website.

e Since we are handling user accounts ourselves we will be using
the Passport Local strategy.

© New York Code + Design Academy 2016

Passport - Installation

e We'll need to install two node modules to accomplish this.

$ npm install passport --save
$ npm install passport-local --save

© New York Code + Design Academy 2016

Sign Up - Routes

e Let's create a dummy route that accepts sign up requests.
e Create a new file in routes for users called 'user.js

e This file will simply export a function that accepts a passport object

//routes/user.js

var express = require('express');
var router = express.Router();

module.exports = function(passport) {

// POST /user/signup
router.post('/signup', function(req, res) {
res.send('got the signup request')

1)

return router;

¥

© New York Code + Design Academy 2016

Routes - Setup

e Next step is to incorporate this new route and passport into our
application.

o After adding the below, test the route 'localhost:3000/api/user/
signup' in Postman. You should get back a response

// add the following to server.babel.js

var passport = require('passport');

app.use(passport.initialize());

var userRoutes = require('./routes/user')(passport); // <-- pass the passport object into userRoutes

app.use('/api/user', userRoutes);

© New York Code + Design Academy 2016

Passport - Setup

e We need to add the logic for our Local Strategy that will tell
passport whether the information the user is sending over meets
our requirements.

e Thought exercise: for signing up, what information do we want to
validate?

e |et's get to work! We'll need to create the folder and files first:

$ mkdir strategies && cd strategies
$ touch passport-local.js

© New York Code + Design Academy 2016

10

passport-local.js - Sign Up

 We are going to export a function that accepts a passport object.

e To define our local sign-up strategy, we'll call the 'use' function on the passport object and provide the

following:

e 'local-signup': the name we're calling this strategy.

e usernamekField: the field on the request that will contain the username
e passwordField: the field on the request that will contain the password

e passReqloCallback: whether to pass the incoming request to the callback that will handle the logic
for signing up.

the callback: the function that will perform the logic and actually create the new user in our system

Let's see this in action...

© New York Code + Design Academy 2016

11

var LocalStrategy = require('passport-local').Strategy;
module.exports = function(passport) {

passport.use('local-signup', new LocalStrategy({
usernamefField: 'email',
passwordField: 'password',
passRegToCallback: true

}, processSignupCallback)); // <<-- more on this to come

© New York Code + Design Academy 2016 12

passport-local.js - Sign Up (cont)

e At this point we need to implement the 'processSignupCallback' function.

e This function is called with the following parameters:

e request: because we passed 'passReqloCallback : true' from the step
above, the first parameter to this function will be the incoming request.

e email: the email of the user wanting to sign up.
e password: the password of the user wanting to sign up.

e done: this is called the 'verify callback' and it is a function we call when
we've completed processing the sign up request.

© New York Code + Design Academy 2016

13

Passport)S - the "done" callback

e The 'done' callback provides us a way of telling passport we're done executing the
code we want to execute.

e There are three arguments that 'done' gets called with eg:
done (error, result, message):

e error: if there was an error we can pass it to the done function and it will forward it
along.

e result: if the outcome was successful this is where we pass the result, if not, we pass
the value 'false’.

e message: this is an optional param that allows us to pass a message through the call
chain.

© New York Code + Design Academy 2016 14

function processSignupCallback(request, email, password, done) {

// first search to see if a user exists in our system with that email
UserModel .findOne({

where: {

'email' : email

s

attributes: ['id']
1)

.then(function(user) {

3)s

© New York Code + Design Academy 2016

15

function processSignupCallback(request, email, password, done) {
// first search to see if a user exists in our system with that email
UserModel .findOne({

where: {
'email' : email
s
attributes: ['id']
1)
.then(function(user) {
if (user) {
// user exists call done() passing null and false
return done(null, false, 'That email is already taken.');
} else {
3
1)

© New York Code + Design Academy 2016

16

function processSignupCallback(request, email, password, done) {
// first search to see if a user exists in our system with that email
UserModel .findOne({

where: {
'email' : email
I
attributes: ['id']
1)
.then(function(user) {
if (user) {

// user exists call done() passing null and false

return done(null, false, 'That email is already taken.');
} else {

// create the new user

var userToCreate = req.body; // make this more secure

UserModel.create(userToCreate)
.then(function(createdRecord) {
//once user is created call done with the created user
createdRecord.password = undefined;
return done(null, createdRecord);

1)
3)s

© New York Code + Design Academy 2016

17

Passport - Serialization

o We'll discuss this further, but for now we'll need to add the 'serializeUser' function to the passport object

e For our purposes this function will just do the following:

// inside of config/passport-local.js
module.exports = function(passport) {

passport.serializeUser(function(user, done) {
done(null, user.id);

1)

passport.use('local-signup', new LocalStrategy({
usernamefField : 'email',
passwordField : 'password',

passRegToCallback : true
}, processSignupCallback));

© New York Code + Design Academy 2016

18

SignUp

e |et's hookup our sign up route to use passport.

 TJo do this we just need to call the authenticate function on
passport and pass the name of the strategy we want to use.

e Once authenticated, Passport will add a "login" function to the

request. We'll need to call this function with the authenticated
user.

© New York Code + Design Academy 2016

19

Sign Up - Logic

//routes/user.js

var express = require('express');
var router = express.Router();

module.exports = function(passport) {
// POST /api/user/signup
router.post('/signup', function(req, res, next) {
passport.authenticate('local-signup', function(err, user, info) {
if (err) {
return next(err); // will generate a 500 error
3
if (luser) {
return next({ error : true, message : info });

3

req. login(user, function(loginErr) {
if (loginErr) {
return next(loginErr);
J
return res.json({
email: user.email,
id: user.id,
1)
1)

})(reqg, res, next);

IDF

return router;

¥

© New York Code + Design Academy 2016

Local Strategy Initialization

e We need to add the following line to initialize or local strategy
implementation

var passport =

require('passport’');

app.use(passport.initialize());

require('./strategies/passport-Llocal')(passport); // <-- add this Lline

var userRoutes

= require('./routes/user')(passport);

app.use('/api/user’', userRoutes);

© New York Code + Design Academy 2016

21

Sign Up - Validation

e Test this out in Postman by making a POST request to localhost:3000/user/signup

* The request body needs to contain:

{
"email": "testl@gmail.com",
"password": "12345",
"firstName": "myFirst",
"lastName": "myLast",

ks

* You should get back a response that has the newly created user.

© New York Code + Design Academy 2016 22

Sign Up Considerations

 We probably don't want to issue the response with all the data that was passed
in (especially the password)

 We can probably get away with just sending back the id, createdAt, and
updatedAt.

e |f we look at the record that was created in the database, we'll see the password
Is the same raw string that was passed in.

e We NEVER want to save passwords like this. It is considered extremely
Insecure.

e To secure our data, we will be encrypting the password.

© New York Code + Design Academy 2016 23

berypt

* |n order to encrypt the passwords we'll be using a node module called 'bcrypt.

e At a high level, bcrypt is a function that accepts two arguments: a string and a
random input and generates a 'hash' of that string (an encrypted string).

 The first argument is the string we want to encrypt.

e The second argument is what's called a 'saltRound’.

e bcrypt uses the saltRound to generate a 'salt' which is the random input that is
fed into the function that creates the hash.

e The more rounds, the more random (secure) the data. However there is a time
cost with having a lot of rounds, we will be using 10.

© New York Code + Design Academy 2016 24

// concat
var result

var result

// bcrypt
var result

var result

bcrpyt Analogy

concat('Hello ', 10); // result = 'Hello 10’

concat('My age is ', 10); // result

bcrypt('myPassword', 10); // result

bcrypt('yourPassword', 10); // result

© New York Code + Design Academy 2016

'My age is 10'

'&935h82khs20932j0"

= 'kjih&#Hj2n23928"

25

Password Encryption - Installation

e |et's start off by installing the bcrypt module

$ npm install bcrypt --save

© New York Code + Design Academy 2016

26

bcrypt - Example

e WEe'll call the 'hash' function passing in the user's password and the saltRounds.

e Lastly, we'll pass in the callback function that will contain the hash. This is what
we'll be saving in the database.

e You should save your saltRounds value in a configuration file

e |et's integrate this in our passport Sign Up process

const saltRounds = 10;

bcrypt.hash(user.password, saltRounds, function(err, hash) {
// Store 'hash' in your password DB.

1)

© New York Code + Design Academy 2016 27

var bcrypt = require('bcrypt');

function processSignupCallback(req, email, password, done) {
UserModel .findOne({
where: {
'email' : email
s
attributes: ['id']
1)
.then(function(user) {
// check to see if theres already a user with that email

if (user) {
return done(null, false, 'That email is already taken.');
} else {

var userToCreate = req.body;

bcrypt.hash(userToCreate.password, 10, function(err, hash) {
userToCreate.password = hash;
UserModel.create(userToCreate)
.then(function(createdRecord) {
createdRecord.password = undefined;
return done(null, createdRecord);

IDF
IDF
}
IDF

© New York Code + Design Academy 2016

28

Sign Up - Validation

e Test your Sign Up request is properly working.

 You should see a random string in the password column when
you create a new user.

 Congratulations you've successfully allowed your users to sign
up for your application.

e Next step: Logging In

© New York Code + Design Academy 2016

29

Login - Setup
e Good news! We've done a lot of the work required with setting

up passport.

e We just need to add the logic that determines whether a user
can log in.

e |et's get to work!

© New York Code + Design Academy 2016

30

Login - Local Strategy

* In the same module.export that we used for sign up, let's define a new login strategy.

// add to strageies/passport-local.js
module.exports = function(passport) {

passport.serializeUser(function(user, done) {
done(null, user.id);

1)

passport.use('local-signup', new LocalStrategy({
usernamefField : 'email',
passwordField : 'password',

passReqgToCallback : true
}, processSignupCallback));

passport.use('local-login', new LocalStrategy({
usernamefField : 'email',
passwordField : 'password',

}, processLoginCallback));

¥

© New York Code + Design Academy 2016

Login - processLoginCallback

 This is the callback where we'll be putting our logic that
determines if the request is a valid login

e Thought exercise: what determines if a login attempt is valid?

© New York Code + Design Academy 2016

32

function processLoginCallback(email, password, done) {
// first let's find a user in our system with that email
User.findOne({
where: {
'email' : email
by
1)

.then(function(user) {
if (luser) {
return done(null, false, "No user name found with provided email")

b

// make sure the password they provided matches what we have
// (think about this one, before moving forward)

)

© New York Code + Design Academy 2016

33

function processLoginCallback(email, password, done) {
// first let's find a user in our system with that email
User.findOne({
where: {
'email' : email
by
1)

.then(function(user) {
if (luser) {
return done(null, false, "No user name found with provided email'")

by

// make sure the password they provided matches what we have
// (think about this one, before moving forward)
bcrypt.compare(password, user.password, function(err, result) {

if (lresult) {

return done(null, false, "Invalid Password for provided email')

by

user.password = undefined;

return done(null, user);

)
1)

© New York Code + Design Academy 2016

34

Login - Routes

e Back in our routes/user.js file we'll need to add the route for
logging In.

o We'll also need to denote which passport strategy to user for
logging In.

© New York Code + Design Academy 2016

35

// add this to routes/user.js

// POST /api/user/login
router.post('/login', function(req, res, next) {
passport.authenticate('local-login', function(err, user, info) {
if (err) {
return next(err); // will generate a 500 error
by
if (! user) {
return next({ error : true, message : info });

b

req.login(user, function(loginkrr) {
if (loginErr) {
return next(loginkrr);
by
return res.json({
email: user.email,
id: user.id
1)
1)

})(req, res, next);

1)

© New York Code + Design Academy 2016

36

Login - Validation

e Test this new route in Postman. Send a request to 'localhost:3000/api/user/
login'

e The request should be a POST request with the following in the body.

* You should get back the complete user object.

// POST localhost:3000/user/login with body:

{

"email": "some email',
"passwort": "myPassport",

J

© New York Code + Design Academy 2016

37

Summary

* |n order to enabled user sign up and login to our system we just performed the following
steps.

* Added our User table to the database.
e |nstalled PassportJS.
 Implemented the sign up functionality using passport-local.
e Added bcrypt for encrypting passwords.
 Implemented the login functionality using passport-local.
e What's next?

e We want to keep track of who has logged in and who hasn't. Enter: The JSON Web Token

© New York Code + Design Academy 2016 38

User Authorization

e Once a user has signed up or logged in, we want to give them
access to certain information they didn't have before.

 We also want to prevent non-authenticated users from accessing
this information as well.

e |n order to accomplish this we'll be using a technology called a
JSON Web Token (jwt).

© New York Code + Design Academy 2016 39

JWT

e Ajwtis essentially a long string that has certain information encoded in it.

e Your sever will be the only server that knows how to take the string, decode it and pull the information
out of it.

e Some information we typically put in the jwt:
e The user'sid
e An expiration date of the token

 Anything else that makes sense for your application.

//example token:
eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyIJpZCI6MTIsImlhd
CI6MTQ30DgwNzMxMCwiZXhwIljoxNDc40DA3MzQwEQ . VPvXni
WBG503UBWyYy81i5Ki791LYOW2S1lyhfv5L8r8WzyA

© New York Code + Design Academy 2016

40

JWT - Strategy

 The high level strategy is when the user signs up or logs in:
e The server will generate the jwt.
e |t will return the token in the response of the sign up or log in requests
e The client will then save the token in the browser's local storage.

 From then on, each time the client wants to make a request it will need to pass the token
to the server.

e The server will decode the information
 Then it will verify the token is valid/hasn't expired/belongs to that user etc

e If all the checks pass, it will allow the request to go through.

© New York Code + Design Academy 2016

41

JWT - Installation

e |et's start by installing the node module needed to generate
these web tokens

$ npm install jsonwebtoken --save

© New York Code + Design Academy 2016

42

jsonwebtoken usage

e Once we create a user we'll need to also create a token, encode the id into the
token and save the user with the updated token value.

 The jwt module has a function call sign that takes the following parameters:
 An object containing any additional information you want to encode.

e The jwtSecret: this is what enables your server (and only your server) to decode
any incoming tokens

e An expiration time in seconds (eg 60 * 60 = 1 hour)

e |et's update our processSignupCallback so that we save the token in the User
model.

© New York Code + Design Academy 2016

43

var jwt = require('jsonwebtoken');

bcrypt.hash(userToCreate.password, 10, function(err, hash) {
userToCreate.password = hash;

User.create(userToCreate)
.then(function(createdRecord) {
jwt.sign({id: createdRecord.id}, 'MySuperDuperSecret', {expireslIn: 60 * 60}, function(err, token) {
createdRecord.token = token;
return done(null, savedUser);

1)
)
1)

© New York Code + Design Academy 2016 44

Exercise - Logging In

e Add the needed code in your processLoginCallback so that when
a user logs in, a jwt is generated.

© New York Code + Design Academy 2016 45

Exercise - Solution

bcrypt.compare(password, user.password, function(err, result) {
user.password = undefined;

if (lresult) {
return done(null, false, "Invalid Password for provided email")
} else {
jwt.sign({id: user.id}, 'MySuperDuperSecret',6 {expiresIn: 60 * 60}, function(err, token) {
user.token = token;
return done(null, savedRecord);

1)
)
1)

© New York Code + Design Academy 2016 46

JWT - Routes Update

e Now that we're properly creating the token, we need to properly
return it in the response back to the client

e |n your login and sign up routes, add an field for the token in the
response

return res.json({
emall: user.emaill,
1d: user.id,
token: user.token

1)

© New York Code + Design Academy 2016

47

JWT - Client Side

 Now that we're returning the token in the response, we'll need to save it on the browser's local storage.

fetch('/api/login', {
method: 'POST',
mode: 'same-origin',
headers: {
'Content-Type': 'application/json'
j¥
body: JSON.stringify(userAuthForm)
1)
.then(response => response.json())
.then((response) => {
if (response.error) {
alert (response.message)
} else {
LlocalStorage.setltem('token', response.token)

by
1)

© New York Code + Design Academy 2016

48

JWT - Checkpoint

e We're now at a place where our server is generating the token

e |t's returning it in the response with the login and sign up

© New York Code + Design Academy 2016

49

Protected Routes

* We're at the point now where we can introduce protected routes that should be only accessible to logged in users.

e Let's start with creating a 'profile' route that displays a logged in user's information.

//routes/profile.js

var express = require('express');
var router = express.Router();
const models = require('../db');

var User = require('../db').users;

router.get('/profile/:id', function(req, res, next) {
User.findById(req.params.id)
.then(function(user) {
res.json({
email: user.email,
firstName: user.firstName,
LastName: user.lastName,
id: user.id
1)
1)
1)

module.exports = router

© New York Code + Design Academy 2016

50

Profile Routes

//server.babel.js
var profileRoutes = require('./routes/profile');
app.use('/api/protected', profileRoutes)

© New York Code + Design Academy 2016

51

Sanity Check

e At this point we're not verifying any tokens, we just want to
make sure our route is working.

e |n postman, create a request for '/api/protected/profile/
<someld>’

 You should see the response returning with the users
information

© New York Code + Design Academy 2016

52

Verify Tokens

* |n order to verify a token is valid we'll be using another passport
strategy

npm install passport-jwt --save

© New York Code + Design Academy 2016

53

Passport-Jwt

e Now we'll need to write the code that does the actual
verification and the code that tells passport when to do so.

e |n the 'strategies’ directory, create a file called 'passport-jwt.js'

e We're going to put code in the next slide that accomplishes this.

© New York Code + Design Academy 2016

54

//strategies/passport-jwt.js

const JwtStrategy = require('passport-jwt').Strategy;
const Extractldwt = require('passport-jwt').Extractlwt;

const options = {
jwtFromRequest: ExtractlJwt.fromHeader('authorization'),

secretOrKey: config.jwtSecret,

b

module.exports = function(passport) {
passport.use(new JwtStrategy(options, function(jwt payload, done) {
User.findById(jwt payload.id)
.then(function(user) {
if (user) {
// user was found successfully
done(null, user);

} else {
// no user was found for that id
done(null, false, 'No user was found for the token provided');

1)
1))
3

© New York Code + Design Academy 2016

55

Passport-Jwt - Explanation

e passport-jwt needs to know where the header is going to be located in each request.

 There are a few different options here. We'll be using the
ExtractJwt.fromHeader('authorization') option

e So all incoming requests that require authorization will need to pass the token in
the header under the 'authorization' key

 The function we pass in will contain the decoded jwt_payload. This will have the
user id we set earlier in it.

* We need to go through and search for a user with that given id.
e Once we find the user we'll call the done function passing it through

© New York Code + Design Academy 2016 56

Passport-Jwt - Routes

e Now that we've written the code that actually performs the
verification we'll need to tell express which routes require the
authorization.

e To do this we'll need to create an identifier in our routes to
indicate that a route requires authorization.

e We're going to use 'api/protected’ to denote this.

© New York Code + Design Academy 2016

57

//server.babel.js

app.use('/api/protected', function(req, res, next) {
passport.authenticate('jwt', {session:false}, function(err, user, jwtError) {
if (user) {
req.login(user, null, () => {})
next()
} else {
next(jwtError)

3

})(req, res, next)

1)

app.use('/api/protected’', profileRoutes)

© New York Code + Design Academy 2016 58

Passport-Jwt - Routes Explanation

 For any incoming requests that are '/api/protected' we are going to call the authenticate function on
passport and pass in the 'jwt' strategy to denote we want to verify the token

e When we do this the verification code we wrote above will execute and if successful, will pass us
back a user

e if we don't get a user that means we had a jwtError occur
e Either the token wasn't a real token
e Or it was expired
e Or our server didn't know how to read it
e |If we get back a user then we'll log that user in and proceed to the next route handler

e |f we got back an error we'll pass it on to the error handler

© New York Code + Design Academy 2016 59

Passport-Jwt - Sanity Check

* Tryto go back in postman and access the same 'api/protected/
profile/<someld>" url

e You should get back an authentication error.

e Add the 'authorization' header to your request (you'll need an
actual token for this)

 You should see a successful response with the user's information
In it

© New York Code + Design Academy 2016 60

